Apple’s Heart Study Is the Biggest Ever, But With a Catch

Last November, Apple Watch owners began receiving recruitment emails from Apple. The company was looking for owners of its smartwatch to participate in the Apple Heart Study—a Stanford-led investigation into the wearable’s ability to sense irregular heart rhythms.

Joining was simple: Install an app and wear your watch. If the watch’s optical sensors detected an arrhythmia, you might be shipped a dedicated heart monitor—a benchmark to compare against readings from your Apple Watch—to wear for seven days. In true Apple fashion, enrollment and participation were designed to be as user friendly as possible: “Apple and Stanford Medicine are committed to making it easy for people to participate in medical research,” the research partners wrote, “because more data can lead to discoveries that save lives.”

Now, not for the first time, Apple’s attention to user experience has been rewarded: According to a paper outlining the study’s design in this week’s issue of the American Heart Journal, Apple and Stanford have managed to enroll a staggering 419,093 participants. That makes it the largest screening study on atrial fibrillation ever performed. A study of that size is a big deal for researchers. But even if the results (which should be published next year) are positive, Apple will still have much to prove about the public benefits of its popular wearable.

First let’s talk study size. 400,000 research subjects is huge. By comparison, the Strokestop study—a Swedish investigation into mass arrhythmia screening—has around 25,000 participants. To be fair, the Strokestop study has things going for it that Apple’s study doesn’t, which we’ll get to. But the fact that Apple was able to round up a research population of this size in under a year is impressive.

go to the website
go to these guys
go to this site
go to this web-site
go to this website
go to website
going here
great post to read
great site
had me going
have a peek at these guys
have a peek at this site
have a peek at this web-site
have a peek at this website
have a peek here
he has a good point
he said
helpful hints
helpful resources
helpful site
her comment is here
her explanation
her latest blog
her response
here are the findings
his comment is here
his explanation
his response
home page
hop over to here
hop over to these guys
hop over to this site
hop over to this web-site
hop over to this website
how much is yours worth?
how you can help
i loved this
i thought about this
i was reading this
image source
in the know
informative post
investigate this sitekiller deal
knowing it
learn here
learn more
learn more here
learn the facts here now
learn this here now
like it
like this
linked here
listen to this podcast
look at here
look at here now
look at more info
look at these guys
look at this
look at this now
look at this site
look at this web-site
look at this website
look here
look these up
look what i found
love it
lowest price
made a post
made my day
more about the author
more bonuses
more help
more helpful hints
more hints
more info
more info here
more information
more tips here
moved here

It’s also a major selling point of the study’s design. Larger sample sizes make for smaller error margins and a greater degree of certainty in one’s results, both of which are important when studying the accuracy of a device designed to flag heart problems. Some five million people in the US are affected by atrial fibrillation and atrial flutter (collectively known as AF), irregular heart rhythms that significantly increase one’s risk of stroke and heart failure. An estimated 700,000 of those people don’t even know they have AF.

Cardiologists are particularly interested in that second group. If a product like Apple’s could detect undiagnosed arrhythmias across large populations and compel flagged users to take appropriate preemptive action? It could save lives.

But here’s the thing: Even if the Apple Watch excels at detecting undiagnosed AF (a big if), using it to screen large numbers of asymptomatic people isn’t necessarily a good idea.

Screening comes with risks: Misdiagnosis. Unnecessary tests. Overtreatment. “Those are real problems that need to be sorted out,” says cardiologist Mintu Turakhia, the study’s lead author and director of Stanford’s Center for Digital Health. That’s why he and his team will also observe what happens after Apple Watch users receive an alert: Whether they follow up with a healthcare provider, whether a diagnosis is made, and what treatment they receive. “We’re interested in the patient journey, but we also want to see whether an alert from the watch helps lead to appropriate care,” Turakhia says.

Leave a Reply

Your email address will not be published.