Bitcoin Will Burn the Planet Down. The Question: How Fast?

Max Krause was thinking of buying some bitcoin, as one does. But Krause is an engineer—mostly he works on modeling greenhouse gas emissions from landfills—so his first step was to run the numbers. He looked at price, of course, but also how fast the world’s bitcoin miners create new bitcoins and the ledger that accounts for them. And he looked at how much electricity that would seem to require.

“I thought, man, this is a lot of energy,” Krause says. “I thought, it can’t be true that people are using this much energy. But it is.”

Krause’s calculations aren’t just back-of-the-envelope noodling, cryptocurrency blog trolling, or white-paper crossfire. His calculations of how much energy—and planet-warming carbon emissions—the top four cryptocurrencies might be responsible for appears in an article in the journal Nature Sustainability today, joining a growing canon of peer-reviewed and rigorous work trying to put numbers to a problem the cryptocurrency world has been grappling with for years: How much energy blockchain-powered currencies consume, and how much does the answer matter?

my company
my explanation
my latest blog post
my response
my review here
my sources
navigate here
navigate to these guys
navigate to this site
navigate to this web-site
navigate to this website
next page
no titleofficial site
official source
official statement
official website
on bing
on front page
on the main page
on yahoo
one-time offer
original site
our site
our website
over at this website
over here
pop over here
pop over to these guys
pop over to this site
pop over to this web-site
pop over to this website
published here
read full article
read full report
read here
read more
read more here
read moreÂ…
read review
read the article
read the full info here
read this
read this article
read this post here
read what he said
recommended reading
recommended site
recommended you read
redirected here
related site
right here
secret info
see here
see here now
see it here
see page
see post
see this
see this here
see this page
see this site
see this website
she said
site web
sneak a peek at these guys
sneak a peek at this site
sneak a peek at this web-site
sneak a peek at this web-site.
sneak a peek at this website
sneak a peek here
sources tell me
speaking of
special info
straight from the source
such a good point

Whoever Satoshi Nakamoto is, the genius of his, her, or their idea for bitcoin—published almost exactly a decade ago—was in solving the key problem with digital currency: You can generate more by just copy-pasting. Nakamoto’s idea was to indelibly timestamp every transaction on a continuing chain. Do some really hard math—specifically, find a number that you can “hash” with an algorithm called SHA-256 to produce an answer everyone on the network agrees is right—and you not only create a new block in the chain, but you also get a reward: bitcoins. That system is called “proof of work,” as in, you have to prove you did the math to get the money.

In their new paper, Krause and his co-author follow, at least for its first half, what has become in the past few years a fairly standard method. It starts by interrogating the blockchain network or aggregation websites for how many of those calculations happen in a given amount of time—every day, or every second. That’s the hash rate. (Krause says in August 2018 that was 50 quintillion hashes per second on Bitcoin alone.) Then you find out how much energy the top-of-the-line mining computers use, often in joules per hash. That measurement is trickier, for reasons I’ll get to in a moment. Multiply those together and you know how much power the network is using.

With that number in hand, you can figure out how much electricity a cryptocurrency consumes. It’s 3.6 million joules to 1 kilowatt-hour. Past estimates for Bitcoin have ranged from 4 or 5 terawatt-hours per year up to 44 TWh/yr, as much Hong Kong used in 2017. Krause says it’s more like 8.3 TWh/yr, roughly the energy use of Angola.

But Krause went further, adding estimates for power use by the three next-most-popular cryptocurrency networks—Ethereum, Litecoin, and Monero. Tally that up and ballpark the dozens of smaller entries and you basically double the number, 16.6 TWh/yr, putting cryptocurrency electricity use on a par with Slovenia (with an eye on surpassing Cuba).

Leave a Reply

Your email address will not be published.